Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581087

RESUMO

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Assuntos
Álcool Feniletílico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Álcool Feniletílico/metabolismo , Multiômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação
2.
Chem Asian J ; : e202400070, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581101

RESUMO

Hydrogen has been regarded as a promising alternative to traditional fossil fuels, presenting itself as a viable and environmentally friendly energy choice. The design and fabrication of highly efficient hydrogen storage materials is crucial to the wide utilization of hydrogen-based technologies. Magnesium-based nanocrystalline materials have received significant interest in the field of hydrogen storage due to their remarkable hydrogen storage capabilities and release efficiency. This review emphasizes on the most useful techniques including vapor deposition, sol-gel synthesis, electrochemical deposition, magnetron sputtering, and template-assisted approaches used for the fabrication of Magnesium-based nanocrystalline hydrogen storage materials (Mg-NHSMs), stressing their advantages, limitations, and recent advancements. These cutting-edge techniques demonstrate their significance in offering useful insights into the performance of Mg-NHSMs. Further, this review describes various applications of Mg-NHSMs. In addition, this review highlights the conclusion and future perspectives on the improvement of magnesium based nanocrystalline materials for efficient hydrogen storage.

3.
BMC Endocr Disord ; 24(1): 41, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509509

RESUMO

INTRODUCTION: The prevalence of hyperthyroidism in Pakistan is 2.9%, which is two times higher than in the United States. Most high-quality hyperthyroidism clinical practice guidelines (CPGs) used internationally originate from high-income countries in the West. Local CPGs in Pakistan are not backed by transparent methodologies. We aimed to produce comprehensive, high-quality CPGs for the management of hyperthyroidism in Pakistan. METHODS: We employed the GRADE-ADOLOPMENT approach utilizing the 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis as the source CPG. Recommendations from the source guideline were either adopted as is, excluded, or adapted according to our local context. RESULTS: The source guideline included a total of 124 recommendations, out of which 71 were adopted and 49 were excluded. 4 recommendations were carried forward for adaptation via the ETD process, with modifications being made to 2 of these. The first addressed the need for liver function tests (LFTs) amongst patients experiencing symptoms of hepatotoxicity while being treated with anti-thyroid drugs (ATDs). The second pertained to thyroid status testing post-treatment by radioactive iodine (RAI) therapy for Graves' Disease (GD). Both adaptations centered around the judicious use of laboratory investigations to reduce costs of hyperthyroidism management. CONCLUSION: Our newly developed hyperthyroidism CPGs for Pakistan contain two context-specific modifications that prioritize patients' finances during the course of hyperthyroidism management and to limit the overuse of laboratory testing in a resource-constrained setting. Future research must investigate the cost-effectiveness and risk-benefit ratio of these modified recommendations.


Assuntos
Doença de Graves , Hipertireoidismo , Neoplasias da Glândula Tireoide , Humanos , Paquistão/epidemiologia , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Hipertireoidismo/diagnóstico , Hipertireoidismo/epidemiologia , Hipertireoidismo/terapia , Doença de Graves/diagnóstico , Doença de Graves/epidemiologia , Doença de Graves/terapia
4.
Lancet Reg Health Southeast Asia ; 23: 100387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486880

RESUMO

Psychiatric disorders are highly prevalent in Pakistan and burdens the scarce number of psychiatrists present in the country. The establishment of evidence-based clinical practice guidelines (EBCPGs) and primary-care referral pathways within the local context is imperative to make the process efficient. In this Health Policy, we aimed to develop EBCPGs and primary-care referral pathways that are specific to Pakistan's primary-care setting, with the aim of facilitating the management of psychiatric conditions. Ten EBCPGs were created through the GRADE-ADOLOPMENT process; two recommendations were adopted with minor changes, 43 were excluded, and all others were adopted without any changes. Ten primary-care referral pathways for managing ten psychiatric disorders were created and 23 recommendations were added which will help to bridge the gap in care provision. These psychiatric referral pathways and EBCPGs will bring Pakistan's healthcare system a step closer to achieving optimal health outcomes for patients.

5.
Biotechnol J ; 19(3): e2300683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479986

RESUMO

Acremonium chrysogenum is the major industrial producer of cephalosporin C (CPC), which is used as raw material for the production of significant cephalosporin antibiotics. Due to the lack of diverse promoter elements, the development of metabolic engineering transformation is relatively slow, resulting in a limited improvement on CPC production. In this study, based on the analysis of the transcriptome profile, 27 candidate promoters were selected to drive the expression of the reporter genes. The promoter activities of this library ranged from 0.0075 to 101 times of the control promoter PAngpdA . Simultaneously, a rapid screening method for potential bidirectional promoters was developed and 4 strong bidirectional promoters from 27 candidate options were identified and validated. Finally, the Golden Gate method was employed to combine promoter modules from the library with various target genes. Through a mixed transformation and screening process, high-yielding strains AG-6, AG-18, and AG-41 were identified, exhibiting an increase in CPC production of 30%, 35%, and 29%, respectively, compared to the control strain Ac-∆axl2:: eGFP. Therefore, the utilization of this promoter library offers a broader range of synthetic biology toolkits for the genetic engineering transformation of A. chrysogenum, thus establishing a solid foundation for the precise regulation of gene expression.


Assuntos
Acremonium , Cefalosporinas , Cefalosporinas/metabolismo , Transcriptoma , Acremonium/genética , Acremonium/metabolismo , Engenharia Metabólica
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473957

RESUMO

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Assuntos
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferases , Transferases/metabolismo , Ácido Clorogênico/metabolismo , Carthamus tinctorius/genética , Simulação de Acoplamento Molecular , Transcriptoma , Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Gels ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534622

RESUMO

Drug delivery techniques based on polymers have been investigated for their potential to improve drug solubility, reduce systemic side effects, and controlled and targeted administration at infection site. In this study, we developed a co-polymeric hydrogel composed of graphene sheets (GNS), polyvinyl alcohol (PVA), and chitosan (CS) that is loaded with methotrexate (MTX) for in vitro liver cancer treatment. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) was employed to check the structural properties and surface morphology. Moreover, tests were conducted on the cytotoxicity, hemolytic activity, release kinetics, swelling behaviour and degradation of hydrogels. A controlled release of drug from hydrogel in PBS at pH 7.4 was examined using release kinetics. Maximal drug release in six hours was 97.34%. The prepared hydrogels did not encourage the HepG2 growth and were non-hemolytic. The current study highlights the potential of GNS-based hydrogel loaded with MTX as an encouraging therapy for hepatocellular carcinoma. HepG2 cell viability of MTX-loaded CS-PVA-GNS hydrogel was (IC50 5.87 µg/200 mL) in comparison to free MTX (IC50 5.03 µg/200 mL). These outcomes recommend that hydrogels with GNS ensure improved drug delivery in cancer microenvironment while lessening adverse consequences on healthy cells.

8.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
9.
Environ Res ; 245: 118050, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163542

RESUMO

Nano zero-valent (nZVI) based composite have been widely utilized in environmental remediation. However, the rapid agglomeration and quick deactivation of nZVI limited its application on large scale. In this work, CaCO3 supported nZVI-Ni catalyst, namely nZVI-Ni@CaCO3 was prepared and used for the efficient removal of trichloroethylene (TCE) in PS oxidation process. The successful disbursement of nZVI-Ni on CaCO3 support material not only increased the surface area of nZVI-Ni@CaCO3 (69.45 m2/g) with respect to CaCO3 (5.92 m2/g) and bare nZVI (13.29 m2/g) but also improved the catalytic activity. XRD, XPS and FTIR analysis confirmed the successful formation of nZVI-Ni@CaCO3 nanoparticles. The nZVI-Ni@CaCO3 nanoparticles combined with PS had achieved complete removal of TCE (99.8%) with dosage of 36 mg/L and 1.34 mM respectively. These results showed that the use of CaCO3 as support material for nZVI-Ni could have significant influence on contaminant removal process. Scavenging and EPR tests validated the existence of SO4•-, OH• and O2•- radicals in PS/nZVI-Ni@CaCO3 system and highlighted the dominant role of SO4•- radicals in TCE removal process. HCO3- ions and humic acid have shown adverse effect on TCE removal due to radical scavenging and buffering effect. Owing to improved catalytic activity and easy preparation, the nZVI-Ni@CaCO3 nanoparticles could be served as an alternative strategy for environmental remediation.


Assuntos
Nanocompostos , Tricloroetileno , Poluentes Químicos da Água , Níquel , Ferro , Poluentes Químicos da Água/análise
10.
RSC Adv ; 14(5): 3178-3185, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249669

RESUMO

Ab initio calculations have been used to investigate lead-free double-perovskites (DPs) X2AgBiY6 (X = NH4, PH4, AsH4, SbH4 and Y = Cl, Br) for solar-cell-based energy sources. The most recent and improved Becke-Johnson potential (TB-mBJ) has been proposed for the computation of optoelectronic properties. Theoretical and calculated values of the lattice constants obtained by applying the Wu-Cohen generalized gradient approximation (WC-GGA) were found to be in good agreement. The computed bandgap values of (NH4)2AgBiBr6 (1.574 eV) and (SbH4)2AgBiBr6 (1.440 eV) revealed their indirect character, demonstrating that they are suitable contenders for visible light solar-cell (SC) technology. Properties like the refractive index, light absorption, reflection, and dielectric constant are all explained in terms of the optical ranges. Within the wavelength range of 620-310 nm, the maximum absorption band has been identified. Additionally, we discover that all chemicals investigated herein have photocatalytic capabilities that can be used to efficiently produce hydrogen at cheap cost using solar water splitting by photocatalysts. In addition, the stability of the compounds was examined using the calculation of mechanical properties.

11.
Stem Cell Res Ther ; 15(1): 12, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185703

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS: We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS: The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS: This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.


Assuntos
Lisossomos , Obesidade , Humanos , Obesidade/terapia , Fagocitose , Adiposidade , Antioxidantes , Células-Tronco
12.
RSC Adv ; 14(3): 2102-2115, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38196904

RESUMO

Metal-organic frameworks (MOFs) are one of the most sought-after materials in the domain of supercapacitors and can be tailored to accommodate diverse compositions, making them amenable to facile functionalization. However, their intrinsic specific capacitance as well as energy density is minimal, which hinders their usage for advanced energy storage applications. Therefore, herein, we have prepared six electrodes, i.e., Ni-Co-Mn MOFs, polyaniline (PANI), and reduced graphene oxide (rGO) along with their novel nanocomposites, i.e., C1, C2, and C3, comprising MOFs : PANI : rGO in a mass ratio of 100 : 1 : 0.5, 100 : 1 : 1, and 100 : 1 : 10, respectively. The polyaniline conducting polymer and rGO enabled efficient electron transport, enhanced charge storage processes, substantial surface area facilitating higher loading of active materials, promoting electrochemical reactions, and ultimately enhanced nanocomposite system performance. As a result, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques confirmed the successful synthesis and revealed distinct morphological features of the materials. Following electrochemical testing, it was observed that composition C2 exhibited the highest performance, demonstrating a groundbreaking specific capacitance of 1007 F g-1 at 1 A g-1. The device showed a good energy density of 25.11 W h kg-1 and a power density of 860 W kg-1. Remarkably, the device demonstrated a capacity retention of 115% after 1500 cycles, which is a clear indication of the wettability factor, according to the literature. The power law indicated b-values in a range of 0.58-0.64, verifying the hybrid-type behavior of supercapacitors.

13.
J Pak Med Assoc ; 74(1): 62-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219167

RESUMO

OBJECTIVE: To measure and compare the serum levels of resistin and lipid profile parameters in primigravida females with and without preeclampsia. Methods: The analytical cross-sectional study was conducted at the Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan, from 2018 to 2020, and comprised primigravida females having gestational age 30-36 weeks. Those with preeclampsia constituted group 1, while normotensive females constituted group 2. All the participants were subjected to detailed history and general physical examination. Serum resistin levels were measured by enzymelinked immunosorbent assay, and lipid profile parameters were measured using the colorimetric method. Data was analysed using SPSS 20. RESULTS: Of the 80 women, 40(50%) were in group 1 with mean age 23.07±2.10 years and mean gestation age 33.45±2.30 weeks. There were 40(50%) women in group 2 with mean age 23.02±2.11 years and mean gestational age 34.45±1.75 weeks. Mean serum resistin was significantly higher in group 1 compared to group 2 (p<0.02). Mean levels of lipid parameters were significantly different between the groups (p˂0.05). Conclusion: Preeclampsia was found to be associated with higher levels of resistin and lipid parameters compared to normal pregnancy.


Assuntos
Pré-Eclâmpsia , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem , Pressão Sanguínea , Estudos Transversais , Lipídeos , Resistina
14.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230950

RESUMO

The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

15.
APL Bioeng ; 7(4): 046111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941766

RESUMO

Wearable thermoregulatory technologies have attracted widespread attention because of their potential for impacting individual physiological comfort and for reducing building energy consumption. Within this context, the study of materials and systems that can merge the advantageous characteristics of both active and passive operating modes has proven particularly attractive. Accordingly, our laboratory has drawn inspiration from the appearance-changing skin of Loliginidae (inshore squids) for the introduction of a unique class of dynamic thermoregulatory composite materials with outstanding figures of merit. Herein, we demonstrate a straightforward approach for experimentally controlling and computationally predicting the adaptive infrared properties of such bioinspired composites, thereby enabling the development and validation of robust structure-function relationships for the composites. Our findings may help unlock the potential of not only the described materials but also comparable systems for applications as varied as thermoregulatory wearables, food packaging, infrared camouflage, soft robotics, and biomedical sensing.

16.
BMC Res Notes ; 16(1): 329, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951910

RESUMO

Authorship determination on a research article remains a largely subjective process. Existing guidelines on authorship taxonomy lack objectivity and are more useful in determining who deserves authorship rather than determining the order of authors. To promote best practices in authorship taxonomy, we developed an authorship rubric that provides a fair, objective, and transparent means of crediting authorship. We christened this tool the "CalculAuthor". The following steps are to be undertaken to create a scoring system based on the requirements of the projects: determining creditable criteria, assigning credit weightages, deciding levels of contribution, determining each author's contribution, calculating authorship scores and ranking. These must be performed by or in close collaboration with the primary investigator (PI), with conflicts being resolved at the PI's discretion. All team members should be informed about the authorship determination process early in the project and their agreement regarding its use must be obtained. While the CalculAuthor was developed to be used in medical research, its customizability enables it to be employed in any field of academia. We recommend that the CalculAuthor be piloted within institutions before its mainstream adoption, and any institution-specific factors should be considered to make the process more efficient and suitable.


Assuntos
Autoria , Pesquisa Biomédica , Instalações de Saúde
17.
Langmuir ; 39(46): 16328-16335, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939319

RESUMO

Carburization is a promising surface-hardening approach to maximize the tribological and mechanical properties of metals and alloys by making thin-layer surface carbides. The current study investigates the effect of carburizing on the electrodeposited Fe-W alloy coating. This process involeves the thermal decomposition of ethanol in an argon (Ar) atmosphere at varying temperatures. The amorphous electrodeposits of Fe-W alloy coating formed at optimized current density (500 A/cm2) are transformed to the uniform W-rich reinforced bimetallic carbide (Fe3W3C) layers at a carburizing temperature of 850 °C. The sample Fe-50WC (850 °C) shows enhanced hardness and highest wear resistance with a lowest specific wear rate (10-7 mm3/Nm) as compared to the as-electrodeposited Fe-W alloy and other Fe-W, Co-W, and hard chromium coatings reported in the literature. The present strategy can be applied to develop alternative, low cost, and environmentally friendly W-based composite coatings to replace the toxic chromium coatings.

18.
Chem Asian J ; : e202300780, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811920

RESUMO

The increasing global energy demand, which is being driven by population growth and urbanization, necessitates the exploration of sustainable energy sources. While traditional energy generation predominantly relies on fossil fuels, it also contributes to alarming CO2 emissions. Hydrogen has emerged as a promising alternative energy carrier with its zero-carbon emission profile. However, effective hydrogen storage remains a challenge. When exposed to hydrogen, conventional metallic vessels, once considered to be the primary hydrogen carriers, are prone to brittleness-induced cracking. This has spurred interest in alternative storage solutions, particularly porous materials like metal-organic frameworks and activated carbon (AC). Among these, biomass-derived AC stands out for its eco-friendly nature, cost-effectiveness, and optimal adsorption properties. This review offers a comprehensive overview of recent advancements in the synthesis, characterization, and hydrogen storage capabilities of AC. The unique benefits of biomass-derived sources are highlighted, as is the pivotal role of chemical and physical activation processes. Furthermore, we identify existing challenges and propose future research directions in AC-based hydrogen storage. This compilation aims to serve as a foundation for potential innovations in sustainable hydrogen storage solutions.

19.
Medicina (Kaunas) ; 59(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37763739

RESUMO

Background and Objectives: Juvenile nasopharyngeal angiofibroma (JNA) is an angiomatous hamartoma of the nasal cavity. It is a benign but locally aggressive vascular tumor of the nasopharynx affecting adolescent males. Many surgical procedures are in practice, but the extended endonasal endoscopic (EEE) approach for JNAs is a suitable and effective technique. Materials and Methods: Fifteen adolescent patients having JNA who underwent extended endonasal endoscopic (EEE) surgery from January 2010 to January 2022 were studied retrospectively. Patients having residual and recurrent JNAs and those who underwent surgery other than EEE were excluded. Results: The average age of the patients was 18.3 years of age. A total of six patients (40%) each had stage V and IV while three patients (20%) had stage III JNAs. Gross total removal was achieved in eight (53.3%) patients and seven (43.7%) had partial removal. There was no per or postoperative mortality. All the patients had at least 3 years of postoperative follow-up and during follow-ups, seven patients were found to have residual tumors, and two had recurrences. Discussion: During the last decades, the endoscopic approach for the resection of JNAs has gained increasing popularity due to its obvious advantages over transfacial approaches. The magnified and angled field of view "behind the corner" helping in a more complete inspection for the resection and shorter hospitalization time makes it a better choice than the other approaches. Conclusions: Endoscopy is an excellent approach for primary JNA. It allows well visualization and precise removal of the angiofibroma. An endoscopic multiangle, multicorridor skull base approach including Denker's anteromedial maxillotomy is suitable and preferable for the resection of extensive JNAs.


Assuntos
Angiofibroma , Neoplasias Nasofaríngeas , Adolescente , Masculino , Humanos , Angiofibroma/cirurgia , Radioterapia Adjuvante , Estudos Retrospectivos , Endoscopia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/cirurgia
20.
Stem Cells ; 41(11): 987-1005, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591309

RESUMO

Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.


Assuntos
AVC Isquêmico , RNA Longo não Codificante , Acidente Vascular Cerebral , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Neurogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...